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Kinetic complete wetting of a planar defect close to a bulk tricritical point
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The nucleation of a new phase at a moving planar defect is considered in the high-symmetry phase of a bulk
tricritical point. In the first-order regime a kinetic complete-wetting transition is found where the thickness of
the nucleation layer diverges, inducing a change of the drag coefficient of the defect. When the tricritical point
is approached, the complete-wetting transition disappears, and, in the adjacent second-order regime, the layer
thickness is finite in the full nucleation region.
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The heterogeneous nucleation of a new phase at extendetbse to the critical velocity the kink is so far from the defect
defects in a crystal generally occurs in the high-symmetrythat its velocity is essentially determined by the well-studied
regime of some bulk phase transition. Various examples ofree-kink motion, induced by appropriate boundary condi-
such situations are quoted in R¢t] where, with regard to  tions[3]. The result for the critical velocity and the value of
plastic behavior, the driven motion of a planar defect, coateghe free energy at the metastable state eventually fix the shift
by the layer of a new phase, has been discussed. In a reigf the drag coefficient in the way outlined in R¢2].
vestigation of the problem, we have recently observed that, Following Ref.[3], we describe the bulk phase transition

in case_of a first-or_der_bulk transition, the moving_nucleationby a scalar order parameter entering the free-energy den-
layer displays a kinetic complete-wetting transitif#2j. In sity

fact, if some temperature-dependent critical velocity is ap-
proached from below, the layer thickness shows a logarith-
mic divergence and stays infinite in the adjacent complete-

wetting regime. We have also pointed out that this transition f(y) = 5772 _ ?7]44_ 97]6_ (1)
should be detectable by a shift of the drag coefficient of the 2 4 6
defect.

The analysis in Ref[2] was based on a model with a
piecewise parabolic free-energy density which only allowedrhe stability of the system generally requi@s- 0, whereas
to consider the case of a strong first-order bulk transition. I's~ o B=0 B<0 for first-order. tricritical. and normal-
order to describe the behavior close to a tricritical point, Weitical transitions respectivelA=a(T-Ty) is a linear func-
here use mstegd the standard polynomlal form of the IOC%on of temperaturel where, in the first-order regimel,
free energy. This complements our previous pdggéwhere y

) ; eans the lower spinodal temperature. The upper spinodal
more details and references, concerning the general Contefné{mperatureT*(B) is defined by the relatiorA—B?/(4C)
of the problem, can be found.

— _ * . . . 2
Although the approach in the present paper prevents 5a(T T (B)) which_follows from the identity 7;

4 1 —aaC/ B2 ini
complete analytic description of the moving nucleation Iayer,_[B/(ZC)][P”‘1 4AC/B?] for the nonzero minima #,

the most important attributes of the complete-wetting transiOf (7). Finally, the conditionf(0)=f(x,) fixes t2he tran-
ition temperaturel(B) via the definition A-3B</(16C)

tion can be determined exactly within a mean-field approach® < )
This applies to the location of the complete-wetting regime = (T~ Tc(B)). At the tricritical point, A=«(T-T.(0))
and to the shift of the drag coefficient which both turn out toWhich also applies to the normal-critical regime.
disappear at the tricritical point. A one-dimensional kink prof|ler;(>i) only exists in the
Access to these quantities is opened up on account of tHaysteresis temperature ran§ig<T<T (B). In order to find
following observations. With increasing velocity the trail of its explicit form, one should add to E¢l) a termK (x7)?/2
the nucleus profile develops a shoulder where the order pavith K>0, and solve the resulting saddle-point equations
rameter is captured by one of the metastable minima of thwith boundary conditions)(«) = 7; and 7(—=)=0. Since the
free energy[2]. For subcritical velocities this shoulder is latter is more stable in the presently interesting high-
limited by a kink which tries to release the metastable statsymmetry phase, the kink will propagate in the posite
by moving towards the defect, and, in a steady state, thigirection. As demonstrated in Rdf3], the time-dependent
motion is just balanced by the defect motion. AsymptoticallyGinzburg-Landau equation
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T K
F=fdX{E(ﬁxn)“f(n)-gnzc?(x—X) : (4)

T,7) where the integral runs overs< x< +%, andX denotes the
defect position. The coupling term to the defect is the same
as in Ref.[2], again assuming>0 for the coupling con-
stant.

T From the saddle-point equatiod,F=0 we obtain the
jump condition

L) 7'(X=0) = 7'(X+0) = n(X)x/K, (5

and from its first integral

L. 4 7(X£0) = T \2F(7(X)/K. ()

FIG. 1. Nucleation region in thd@,V plane, bounded by the These equations allow to establish for the surface-order pa-
prewetting and incomplete-wetting linéB=T,(V) and T=T;(V). rameter¢= 7(X) the closed equation
The shaded region is the complete-wetting regime

T(B)<T<T'(B), v(T)<V<V,(T), whereV,(T) is the inverse of o 4 3B 2 E( B K_2>] _
Ti(V). ¢ [d’ c? c\A )] 70 @
5 ) Within the interval
dn=T[Kamn -1 (9], ) 2
K
T(B) <T<TyB)=T.B)+ 2K (8)

involving a damping coefficienf’, has, in the comoving sys-
tem, the stationary solutiop(x—wvt), where the result for the Eq. (7) has the solutions

kink velocity v can be written in the form
#= 2\ e -T) (9)
e c P

K 16aC
v(T) =T/ E{B - \/52 + T[Tc(B) - T]}- 3 in the first-order regim&>0,

In the plane, spanned by the defect velocityand by #2= /3_a[.|. (0)-T] (10)
temperaturdl, the functionV=uv(T) is represented by the left c-°
branch of a downward parabola which runs through the ori- _— .
gin V=0,T=T(B). As argued in the introduction, the strip " the tricritical regimeB=0, and
V>u(T),T(B)<T<T'(B), shown in Fig. 1, represents the 2a
complete-wetting regime. In the strong first-order situation, P = @[Tp(o) =T] (11)
considered in Ref[2], the upper spinodal temperatufié
was located outside of the nucleation region. In the preserin the normal-critical regimeB<0, whereas¢=0 for
case, however, one findg (B)-T.(B)=B?/(16aC), so that T>T,(B).
the complete-wetting region vanishes in the tricritical limit ~ According to Eq.(9) ¢ has a finite jump aT=T,(B), so
B— 0. This completes our analysis, concerning the behaviothat, following the behavior in the bulk, the nucleus appears
of the kinetic complete-wetting transition within the model via a first-order transition. Since, moreover, the point
(1) and(2). =0,T=Ty(B) clearly lies outside the complete-wetting re-
Regrettably, we cannot offer an analytic expression for theyion, the nucleation process has the character of a prewetting
boundary of the nucleation regime in the presently usedransition. From Eqs(10) and (11) it is seen that, in the
model. From Ref[2] it is known, however, that in the first- related regimes, the surface-order parametgust has the
order regime of the bulk transition, this boundary has twosame mean-field critical behavior near the nucleation thresh-
branchesT=Ty(V), and T=T;(V) which are lines of kinetic old T,(0) as the bulk order parameternearT,(0).
prewetting and incomplete-wetting transitions, respectively. Next, we consider the incomplete-wetting transition
Whereas these lines have been included in Fig. 1 in a schevhich only exists in the first-order regime of the bulk phase
matic way only, the character of the related surface transitransition. From Ref.[2] it is known that, below the
tions can be determined quantitatively in both cases. incomplete-wetting line, the wetting layer has a constant
Concerning the kinetic prewetting transition, it seemsorder-parameter value, extending up to the defect plane.
natural to assume that its character is the same as that at ze3ince the layer is captured by the metastable minimum of the
velocity. There, the Cahn theory of wetting transitidd$  free-energy density at saypt, this value just can be identi-
easily allows to locate a stability limiE=T,(B), up to which  fied as a jump of the surface-order parameter across the
a nucleation layer can exist at least in a metastable state. Thiscomplete-wetting line. Sufficiently close to the tricritical
theory is based on the free-energy expression point the incomplete-wetting line will cut the horizontal
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branch of the complete-wetting line. As a result, the surface=D(T)+®(V-v(T)) d(T) with a drag coefficient D(T)
order parameter then has the valie \B/(2C) at the inter- and a shiftd(T) of this coefficient. Since, furthermore,
section point. Amazingly, the common valye=3B/(4C)  f(7(x=-))=f(7,) in the complete-wetting regioi>v(T),
is found at the end point$=T,(0) and T=T, of the full we obtain, in terms of known quantities,
nucleation boundary.

We now turn to the second major topic of our present
investigation which concerns the critical behavior of the drag d(T) = = f(5(T)/u(T), (14)
coefficient along isotherms close to the complete-wetting
transition. The friction force per unit area of the defect plane
is defined byG=—dyxF which, by use of the equation of mo- ich is valid on all isotherms witf.(B) <T<T'(B), and

tion d7=-T &,F, can be written as represents the second main result of the present note.
The fact that most displacive phase transitions occur close
— -1
G= J AT (@) (0xm) + a8 ()] 12 {0 tricritical points[5] should allow to verify our predictions
) _ ) i experimentally. Moreover, these predictions complement and
For stationary solutions in the comoving frame, we havepartly correct previous work on a similar subjg6.
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