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The nucleation of a new phase at a moving planar defect is considered in the high-symmetry phase of a bulk
tricritical point. In the first-order regime a kinetic complete-wetting transition is found where the thickness of
the nucleation layer diverges, inducing a change of the drag coefficient of the defect. When the tricritical point
is approached, the complete-wetting transition disappears, and, in the adjacent second-order regime, the layer
thickness is finite in the full nucleation region.
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The heterogeneous nucleation of a new phase at extended
defects in a crystal generally occurs in the high-symmetry
regime of some bulk phase transition. Various examples of
such situations are quoted in Ref.[1] where, with regard to
plastic behavior, the driven motion of a planar defect, coated
by the layer of a new phase, has been discussed. In a rein-
vestigation of the problem, we have recently observed that,
in case of a first-order bulk transition, the moving nucleation
layer displays a kinetic complete-wetting transition[2]. In
fact, if some temperature-dependent critical velocity is ap-
proached from below, the layer thickness shows a logarith-
mic divergence and stays infinite in the adjacent complete-
wetting regime. We have also pointed out that this transition
should be detectable by a shift of the drag coefficient of the
defect.

The analysis in Ref.[2] was based on a model with a
piecewise parabolic free-energy density which only allowed
to consider the case of a strong first-order bulk transition. In
order to describe the behavior close to a tricritical point, we
here use instead the standard polynomial form of the local
free energy. This complements our previous paper[2] where
more details and references, concerning the general context
of the problem, can be found.

Although the approach in the present paper prevents a
complete analytic description of the moving nucleation layer,
the most important attributes of the complete-wetting transi-
tion can be determined exactly within a mean-field approach.
This applies to the location of the complete-wetting regime,
and to the shift of the drag coefficient which both turn out to
disappear at the tricritical point.

Access to these quantities is opened up on account of the
following observations. With increasing velocity the trail of
the nucleus profile develops a shoulder where the order pa-
rameter is captured by one of the metastable minima of the
free energy[2]. For subcritical velocities this shoulder is
limited by a kink which tries to release the metastable state
by moving towards the defect, and, in a steady state, this
motion is just balanced by the defect motion. Asymptotically

close to the critical velocity the kink is so far from the defect
that its velocity is essentially determined by the well-studied
free-kink motion, induced by appropriate boundary condi-
tions [3]. The result for the critical velocity and the value of
the free energy at the metastable state eventually fix the shift
of the drag coefficient in the way outlined in Ref.[2].

Following Ref.[3], we describe the bulk phase transition
by a scalar order parameterh, entering the free-energy den-
sity

fshd =
A

2
h2 −

B

4
h4 +

C

6
h6. s1d

The stability of the system generally requiresC.0, whereas
B.0, B=0, B,0 for first-order, tricritical, and normal-
critical transitions, respectively.A=asT−T0d is a linear func-
tion of temperatureT where, in the first-order regime,T0
means the lower spinodal temperature. The upper spinodal
temperatureT *sBd is defined by the relationA−B2/ s4Cd
;a(T−T *sBd) which follows from the identity h1

2

;fB/ s2Cdgf1+Î1−4AC/B2g for the nonzero minima ±h1

of fshd. Finally, the conditionfs0d= fs±h1d fixes the tran-
sition temperatureTcsBd via the definitionA−3B2/ s16Cd
;a(T−TcsBd). At the tricritical point, A=a(T−Tcs0d)
which also applies to the normal-critical regime.

A one-dimensional kink profilehsxd only exists in the
hysteresis temperature rangeT0,T,T*sBd. In order to find
its explicit form, one should add to Eq.(1) a termKs]xhd2/2
with K.0, and solve the resulting saddle-point equations
with boundary conditionshs`d=h1 andhs−`d=0. Since the
latter is more stable in the presently interesting high-
symmetry phase, the kink will propagate in the positivex
direction. As demonstrated in Ref.[3], the time-dependent
Ginzburg-Landau equation
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]th = GfK]x
2h − f8shdg, s2d

involving a damping coefficientG, has, in the comoving sys-
tem, the stationary solutionhsx−vtd, where the result for the
kink velocity v can be written in the form

vsTd = GÎ K

3C
HB −ÎB2 +

16aC

3
fTcsBd − TgJ . s3d

In the plane, spanned by the defect velocityV and by
temperatureT, the functionV=vsTd is represented by the left
branch of a downward parabola which runs through the ori-
gin V=0,T=TcsBd. As argued in the introduction, the strip
V.vsTd ,TcsBd,T,T*sBd, shown in Fig. 1, represents the
complete-wetting regime. In the strong first-order situation,
considered in Ref.[2], the upper spinodal temperatureT*

was located outside of the nucleation region. In the present
case, however, one findsT*sBd−TcsBd=B2/ s16aCd, so that
the complete-wetting region vanishes in the tricritical limit
B→0. This completes our analysis, concerning the behavior
of the kinetic complete-wetting transition within the model
(1) and (2).

Regrettably, we cannot offer an analytic expression for the
boundary of the nucleation regime in the presently used
model. From Ref.[2] it is known, however, that in the first-
order regime of the bulk transition, this boundary has two
branches,T=TpsVd, andT=TisVd which are lines of kinetic
prewetting and incomplete-wetting transitions, respectively.
Whereas these lines have been included in Fig. 1 in a sche-
matic way only, the character of the related surface transi-
tions can be determined quantitatively in both cases.

Concerning the kinetic prewetting transition, it seems
natural to assume that its character is the same as that at zero
velocity. There, the Cahn theory of wetting transitions[4]
easily allows to locate a stability limitT=TpsBd, up to which
a nucleation layer can exist at least in a metastable state. This
theory is based on the free-energy expression

F =E dxFK

2
s]xhd2 + fshd −

k

2
h2dsx − XdG , s4d

where the integral runs over −̀,x, +`, andX denotes the
defect position. The coupling term to the defect is the same
as in Ref.f2g, again assumingk.0 for the coupling con-
stant.

From the saddle-point equationdhF=0 we obtain the
jump condition

h8sX − 0d − h8sX + 0d = hsXdk/K, s5d

and from its first integral

h8sX ± 0d = 7 Î2f„hsXd…/K. s6d

These equations allow to establish for the surface-order pa-
rameterf;hsXd the closed equation

f2Ff4 −
3B

2C
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3
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4K
DG = 0. s7d

Within the interval

TcsBd , T , TpsBd ; TcsBd +
k2

4aK
, s8d

Eq. s7d has the solutions

f2 =
3B

4C
+Î3a

C
fTpsBd − Tg s9d

in the first-order regimeB.0,

f2 =Î3a

C
fTps0d − Tg s10d

in the tricritical regimeB=0, and

f2 <
2a

kBl
fTps0d − Tg s11d

in the normal-critical regimeB,0, whereasf=0 for
T.TpsBd.

According to Eq.(9) f has a finite jump atT=TpsBd, so
that, following the behavior in the bulk, the nucleus appears
via a first-order transition. Since, moreover, the pointV
=0,T=TpsBd clearly lies outside the complete-wetting re-
gion, the nucleation process has the character of a prewetting
transition. From Eqs.(10) and (11) it is seen that, in the
related regimes, the surface-order parameterf just has the
same mean-field critical behavior near the nucleation thresh-
old Tps0d as the bulk order parameterh nearTcs0d.

Next, we consider the incomplete-wetting transition
which only exists in the first-order regime of the bulk phase
transition. From Ref.[2] it is known that, below the
incomplete-wetting line, the wetting layer has a constant
order-parameter value, extending up to the defect plane.
Since the layer is captured by the metastable minimum of the
free-energy density at say +h1, this value just can be identi-
fied as a jump of the surface-order parameter across the
incomplete-wetting line. Sufficiently close to the tricritical
point the incomplete-wetting line will cut the horizontal

FIG. 1. Nucleation region in theT,V plane, bounded by the
prewetting and incomplete-wetting linesT=TpsVd and T=TisVd.
The shaded region is the complete-wetting regime
TcsBd,T,T*sBd, vsTd,V,VisTd, whereVisTd is the inverse of
TisVd.
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branch of the complete-wetting line. As a result, the surface-
order parameter then has the valuef=ÎB/ s2Cd at the inter-
section point. Amazingly, the common valuef=Î3B/ s4Cd
is found at the end pointsT=Tps0d and T=Tc of the full
nucleation boundary.

We now turn to the second major topic of our present
investigation which concerns the critical behavior of the drag
coefficient along isotherms close to the complete-wetting
transition. The friction force per unit area of the defect plane
is defined byG=−]XF which, by use of the equation of mo-
tion ]th=−G dhF, can be written as

G =E dxfG−1s]thds]xhd + ]xfshdg. s12d

For stationary solutions in the comoving frame, we have
]th=−V]xh, so that

GsVd = − DsT,VdV − Q„V − vsTd… f„hsx = − `d…, s13d

where Q(V−vsTd) means the Heaviside step function. As
observed in Ref.f2g, there exists a regime where<DsT,Vd

=DsTd+Q(V−vsTd) dsTd with a drag coefficient DsTd
and a shift dsTd of this coefficient. Since, furthermore,
f(hsx=−`d)= fsh1d in the complete-wetting regionV.vsTd,
we obtain, in terms of known quantities,

dsTd = − f„h1sTd…/vsTd, s14d

which is valid on all isotherms withTcsBd,T,T*sBd, and
represents the second main result of the present note.

The fact that most displacive phase transitions occur close
to tricritical points[5] should allow to verify our predictions
experimentally. Moreover, these predictions complement and
partly correct previous work on a similar subject[6].
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